These portable emergency rescue cutters—50 percent lighter and 70 percent cheaper than previous versions—use a miniature version of the power cartridges that separate solid rocket boosters from the Space Shuttle and other NASA spacecraft. Photo courtesy NASA.

Atomic oxygen is a corrosive gas that damages orbiting spacecraft. However, NASA scientists have found ways to utilize the gas for sanitizing surgical implants, aiding forensic scientists, and restoring fire-damaged artwork, such as this painting of Mary Magdalene at St. Alban Episcopal Church in Cleveland. Photos courtesy NASA.

What do artificial hearts, art-restoration methods, grooved highways, memory foam, rescue equipment, surgical implants, water purification systems, and even acne treatments have in common? All directly benefit from NASA-derived technologies.

Every day, our lives are touched by space technology in ways we may not realize. Since 1976, NASA has documented that over 1,600 applications of NASA-derived technologies have benefited the public and the economy. The applications are present in our airports, factories, farms, highways, homes, hospitals, offices, and supermarkets. They have contributed to the development of commercial products and services in the areas of consumer goods, computer technology, environmental resources management, health and medicine, industrial technology, and transportation.

Several well-known products are mistakenly regarded as NASA inventions. In truth, they were only adapted by the agency for the Space Program. For instance, Tang was selected for meals in orbit. Teflon was applied to heat shields and space suits. And Velcro was used to anchor equipment in zero-gravity situations.